
How to implement in, exists, any and all

CONTENTS

01 IN 02 EXISTS

03 NOT IN, NOT EXISTS

1. Set of constants

2. Non associated subquery returns primary key

3. Non associated subquery returns non primary key

4. Large amount of data returned by subquery

5. Associated subquery

1. Subquery associates primary key

2. Subquery associates non primary key

3. Large amount of data returned by subquery

4. Subquery non equivalent Association

1. NOT IN

2. NOT EXISTS

3. Double negative

04 ANY, ALL

1. ANY(or SOME)

2. ALL

CONTENTS

01IN
1. Set of constants

2. Non associated subquery returns primary key

3. Non associated subquery returns non primary key

4. Large amount of data returned by subquery

5. Associated subquery

1. Set of constants

Take the employee table as an example to count the average salaries of all departments in the

first tier cities.

ID NAME CITY SALARY
1 Rebecca Tianjin 7000
2 Ashley Tianjin 11000
3 Rachel Shijiazhuang 9000
4 Emily Shenzhen 7000
5 Ashley Nanjing 16000

… … … …

1. Set of constants

The SQL statement is as follows:

select

DEPT, avg(SALARY) as SALARY

from

Employee

where

STATE in ('Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen')

group by

DEPT

1. Set of constants

　 A B
1 =connect("db").query("select * from Employee") /Connect to database and query employee table

2 [Beijing, Shanghai, Guangzhou, Shenzhen] /Create a constant sequence of first tier cities

3 =A1.select(A2.contain(CITY)) /Select records with cities included in first tier cities

4 =A3.groups(DEPT; avg(SALARY):SALARY) /Group and summarize the average salary of each department

When there are no more than 9 constant items, you can use A.contain() function to filter. SPL is as follows:

A4 DEPT SALARY
Finance 7833.33
HR 7187.5
Marketing 7977.27
… …

1. Set of constants

Query the total monthly sales of key customers ["SAVEA","QUICK", …] in 2014. The sales table is as follows:

ID Customer SellerId Date Amount
10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6
10402 ERNSH 8 2014/01/02 2713.5
10403 ERNSH 4 2014/01/03 1005.9
10404 MAGAA 2 2014/01/03 1675.0

… … … … …

1. Set of constants

The SQL statement is as follows:

select

month(Date) as Month, sum(Amount) as Amount

from

Sales

where

year(Date)=2014

and Customer in (

'SAVEA','QUICK','ERNSH','HUN','RATTC','HANAR','FOLKO','QUEEN','MEREP',

'WHITC','FRANK','KOENE'

)

group by Month

order by Month

1. Set of constants

　 A B
1 =connect("db").query("select * from Sales") /Connect to database and query employee table

2 =["SAVEA","QUICK","ERNSH","HUN","RATTC","HANAR","FOLK
O","QUEEN,MEREP","WHITC","FRANK","KOENE"].sort()

/Create a constant sequence of key customers and
sort them

3 =A1.select(year(Date)==2014 && A2.contain@b(Customer)) /Select 2014 key customer records

4 =A3.groups(month(Date):Month; sum(Amount):Amount) /Group and summarize monthly sales

When there are more than 10 constant items, you can sort the constant sequence, and then use the @b

option of A.contain() function to perform binary search. SPL is as follows:

A4 Month Amount
1 16947.3
2 27793.3
3 14602.7

… …

2. Non associated subquery returns primary key

Query the sales of customers in Beijing in 2014, in descending order. The sales and customer tables are as follows:

Sales
ID
CustomerID
Date
Amount

Customer
ID
Name
City
…

2. Non associated subquery returns primary key

The SQL statement is as follows:

select

CustomerID, sum(Amount) as Amount

from

Sales

where

year(Date)=2014

 and CustomerID in (select ID from Customer where City='Beijing')

group by CustomerID

order by Amount desc

2. Non associated subquery returns primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Sales where year(Date)=2014") /Query data of sales table in 2014

3 =A1.query("select * from Customer where City='Beijing'") /Query customers in Beijing

4 =A2.switch@i(CustomerID, A3:ID) /Use the @i option of the switch function to keep only the records of
Beijing customers

5 =A4.groups(CustomerID.Name:Name;
sum(Amount):Amount).sort@z(Amount)

/Group and summarize the sales of each customer and arrange them in
descending order of total sales

Used the @i option of A.switch() function. Delete the record when no foreign key mapping is found. SPL is as follows:

A5 Name Amount
SAVEA 130672.64
HUN 23959.05
… …

2. Non associated subquery returns primary key

Check how many students in each class have taken "matlab" course. The course table and course selection table are

as follows:

Course
ID
Subject
Score

SelectCourse
ID
Class
Name

2. Non associated subquery returns primary key

The SQL statement is as follows:

select

Class, count(1) as SelectCount

from

SelectCourse

where

ID in (select ID from Course where Name='Matlab')

group by Class

2. Non associated subquery returns primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Query course table

3 =A1.query("select * from SelectCourse") /Query SelectCourse table

4 =A2.select(Name=="Matlab") /Select the specific course from the course table

5 =A3.join@i(ID, A4:ID) /Use @i option of join function for join filtering

6 =A5.groups(Class; count(1):SelectCount) /Group and summarize the number of people registered in each class

The @i option of the A.join() function is used here, deleting mismatched records. SPL is as follows:

Class SelectCount
Class 1 3
Class 2 5
… …

A6

3. Non associated subquery returns non primary key

Check the number of students in each class who have a subject score of more than 80. The score table

and student table are as follows:

Score
StudentID
Subject
Score

Student
ID
Class
Name

The SQL statement is as follows:

select

Class, count(1) as StudentCount

from

Student

where

ID in (select StudentID from Score where Score>80)

group by Class

3. Non associated subquery returns non primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query student table

3 =A1.query("select * from Score") /Query score table

4 =A3.select(Score>80) /Select records with score over 80

5 =A4.id(StudentID) /Use ID function to deduplicate by Student ID

6 =A2.join@i(ID, A5) /Use A.join@i() function to join and filter

7 =A6.groups(Class; count(1):StudentCount) /Group and summarize the number of students in each class

After the subquery is filtered, it is read into memory after deduplication by the joined field, and then it

becomes a case similar to the primary key. SPL is as follows:

Class StudentCount
Class 1 9
Class 2 11
… …

A7

3. Non associated subquery returns non primary key

Query the number of customers with sales records in each city in 2014. The sales and customer tables are as follows:

Sales
ID
CustomerID
Date
Amount

Customer
ID
Name
City
…

3. Non associated subquery returns non primary key

The SQL statement is as follows:

select

City, count(1) as CustomerCount

from

Customer

where

ID in (select CustomerID from Sales where year(Date)=2014)

group by City

3. Non associated subquery returns non primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Customer") /Query customer table

3 =A1.query("select * from Sales where
year(Date)=2014 order by CustomerID")

/Query 2014 sales records and sort by customer ID

4 =A3.groups@o(ID) /Use the groups function to deduplicate by customer ID, and use the @o
option when data is in order

5 =A2.join@i(ID, A4:CustomerID) /Use A.join@i() function to join and filter

6 =A5.groups(City; count(1):CustomerCount) /Group and summarize the number of customers in each city

You can use the @o option of the groups function to speed up when the data is in order by the deduplication field.

SPL is as follows:

City CustomerCount
Dongying 6
Tangshan 7
… …

A6

3. Non associated subquery returns non primary key

4. Large amount of data returned by subquery

When order details and order table are too large to be loaded into memory, ordered merging by cursor is needed.

Query the quantity of orders signed by each salesperson whose actual sales amount exceeds 1000, in descending order.

Order
ID
CustomerID
EmployeeID
Date

Detail
ID
ProductID
Amount
Discount

4. Large amount of data returned by subquery

The SQL statement is as follows:

select

EmployeeID, count(1) as OrderCount

from

Order

where

ID in (select ID from Detail where Amount*(1-Discount) > 1000)

group by EmployeeID

order by OrderCount desc

4. Large amount of data returned by subquery

　 A B
1 =connect("db") /Connect to database

2 =A1.cursor("select * from Order order by ID") /Create order table cursor

3 =A1.cursor("select * from Detail order by ID") /Create order detail table cursor

4 =A3.select(Amount*(1-Discount)>1000) /Select records with actual sales greater than 1000

5 =joinx(A2:Order,ID;A4:Detail,ID) /Using joinx function to merge the cursors of order table and order detail
table in order

6 =A5.groups(Order.EmployeeID:EmployeeID;
icount(Order.ID):OrderCount).sort@z(OrderCount)

/Group and summarize the order quantity of each sales person, and arrange
them in descending order according to the order quantity

The joinx() function is used here for orderly merging. SPL is as follows:

EmployeeID OrderCount
2 3
3 3

… …

A6

5. Associated subquery

When there is no null value, the in with subquery can be described by exists. The example in Section 3 is as follows:

query the number of customers with sales records in each city in 2014:

Sales
ID
CustomerID
Date
Amount

Customer
ID
Name
City
…

5. Associated subquery

The SQL statement is as follows, which is transformed into exists associated subquery:

select

City, count(1) as CustomerCount

from

Customer

where

exists (

select CustomerID from Sales

where year(Date)=2014 and Customer.ID=Sales.CustomerID

)

group by City

The solution of SPL is the same for in subquery and exists subquery of the same requirement.

CONTENTS

02EXISTS

1. Subquery associates primary key

2. Subquery associates non primary key

3. Large amount of data returned by subquery

4. Subquery non equivalent Association

1. Subquery associates primary key

Check the average score of each boy in class one. The score table and student table are as follows:

Score
StudentID
Class
Subject
Score

Student
ID
Class
Name
Gender

1. Subquery associates primary key

The SQL statement is as follows:

select

StudentID, avg(Score) as Score

from

Score

where

exists (

select * from Student

where Class='Class 1' and Gender='Male’

 and Student.Class=Score.Class and Student.ID=Score.StudentID

)

group by StudentID

1. Subquery associates primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Score") /Query the score table

3 =A1.query("select * from Student") /Query the student table

4 =A3.select(Class=="Class 1" && Gender=="Male") /Select male students of class one

5 =A2.join@i(Class:StudentID, A4:Class:ID) /Use A.join@i() function to join and filter

6 =A5.groups(StudentID; avg(Score):Score) /Group and summarize the average score of each student

The idea of this chapter is the same as in subquery. In fact, this exists can also be written with in. SPL is as follows:

StudentID Score
1 76
3 74

… …

A6

2. Subquery associates non primary key

Query the quantity of various products with sales over 500 in 2014. The sales table and product table are as follows:

Sales
ID
ProductID
Date
Amount

Product
ID
Name
Category
…

2. Subquery associates non primary key

The SQL statement is as follows:

select

 Category, count(*) as ProductCount

from

Product

where

exists (

select * from Sales

where year(Date)=2014 and Amount>500

 and Product.ID=Sales.ProductID

)

group by Category

2. Subquery associates non primary key

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Product") /Query product table

3 =A1.query("select * from Sales") /Query sales table

4 =A3.select(year(Date)==2014 && Amount>500) /Select orders with sales over 500 in 2014

5 =A3.id(ProductID) /Deduplication by product ID

6 =A2.join@i(ID, A5) /Use A.join@i() function to join and filter

7 =A6.groups(Category; count(1):ProductCount) /Group and summarize the product sales quantity of each category

SPL is as follows:

Category ProductCount
Electric appliance 2
Fruits 5
… …

A7

3. Large amount of data returned by subquery

When the exist subquery returns a large amount of data, similar to the in subquery, it can also be solved by the

orderly merging of cursors. Query the number of orders that did not use discounts per month in 2014.

Order
ID
CustomerID
EmployeeID
Date

Detail
ID
ProductID
Amount
Discount

3. Large amount of data returned by subquery

The SQL statement is as follows:

select

month(Date) as Month, count(*) as OrderCount

from

Order

where

exists (select * from Detail where Discount = 0 and Order.ID = Detail.ID)

group by Month

order by Month

3. Large amount of data returned by subquery

　 A B
1 =connect("db") /Connect to database

2 =A1.cursor("select * from Order where year(Date)=2014
order by ID")

/Create order table cursor and select 2014 records

3 =A1.cursor("select * from Detail order by ID") /Create order detail table cursor

4 =A3.select(Discount==0) /Select records that do not use discounts

5 =joinx(A2:Order,ID;A4:Detail,ID) /Using joinx function to merge the cursors of order table and order detail
table in order

6 =A5.groups(month(Order.Date):Month;
icount(Order.ID):OrderCount)

/Group and summarize the order quantity of each month

The joinx() function is used here for orderly merging. SPL is as follows:

Month OrderCount
1 16
2 25

… …

A6

4. Subquery non equivalent Association

Query the sales amount of orders with a time span of more than one year. The order details table is as follows:

ID NUMBER AMOUNT DELIVERDATE ARRIVALDATE
10814 1 408.0 2014/01/05 2014/04/18
10814 2 204.0 2014/02/21 2014/04/05
10814 3 102.0 2014/03/14 2014/04/06
10814 4 102.0 2014/04/09 2014/04/27
10814 5 102.0 2014/05/04 2014/07/04
10848 1 873.0 2014/01/06 2014/04/21

… … … … …

4. Subquery non equivalent Association

The SQL statement is as follows:

select

ID, sum(Amount) as Amount

from

Detail t1

where

exists (

select * from Detail t2

where datediff(t1.ARRIVALDATE, t2.DELIVERDATE)>365

 and t1.ID=t2.ID and t1.NUMBER<>t2.NUMBER

)

group by ID

4. Subquery non equivalent Association

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Detail") /Query order details table

3 =A2.group(ID) /Group by order date

4 =A3.select(interval(~.min(DELIVERDATE),
~.max(ARRIVALDATE)) > 365)

/Select records with more than 365 days interval for the same order

5 =A4.new(ID, ~.sum(AMOUNT):Amount) /Create a sequence table, and count the sales amount of each order

SPL is as follows:

ID Amount
10998 6800.0
11013 4560.0
11032 20615.0

… …

A5

CONTENTS

03NOT IN , NOT EXISTS
1. NOT IN

2. NOT EXISTS

3. Double negative

1. NOT IN

There are sales table and customer table. Query the sales of new customers in 2014.

Customer
ID
Name
City
…

Sales
ID
CustomerID
OrderDate
…

1. NOT IN

The SQL statement is as follows:

select

CustomerID, sum(Amount) as Amount

from

Sales

where

CustomerID not in (select ID from Customer)

group by CustomerID

1. NOT IN

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Sales where
year(OrderDate)=2014")

/Query 2014 sales records

3 =A1.query("select * from Customer") /Query customer table

4 =A2.join@d(CustomerID ,A3:ID) /Use A. join@d () to select the records whose customer ID does not exist in the
customer table from the sales table

5 =A4.groups(CustomerID; sum(Amount):Amount) /Group and summarize the sales amount of each customer

SPL is as follows, in which the @d option of A.join() function is used, and only unmatched records are retained:

CustomerID Amount
DOS 11830.1
HUN 57317.39
… …

A5

2. NOT EXISTS

Find students with scores above 80 in all subjects.

Score
StudentID
Subject
Score
…

Student
ID
Class
Name
…

2. NOT EXISTS

The SQL statement is as follows:

select *

from Student

where

not exists (

select *

from Score

where

Score <= 80 and Score.StudentID = Student. ID

)

2. NOT EXISTS

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query student table

3 =A1.query("select * from Score") /Query score table

4 =A3.select(Score<=80) /Select records with scores no higher than 80

5 =A4.id(StudentID) /Deduplicate by Student ID

6 =A2.join@d(ID, A5) /Use A.join@d() to select unmatched records

Only need to find students with no score lower or equal to 80. SPL is as follows:

ID Class Name
2 Class 1 Ashley

16 Class 2 Alexis

A6

3. Double negative

Check the students who have taken all courses. The student table, course selection table and course table

are as follows:

Course
ID
Name
TeacherID
…

Student
ID
Name
Class
…

SelectCourse
ID
CourseID
StudentID
…

3. Double negative

Only need to find students with no any course that he has not selected. The SQL statement is as follows:

Select *

from Student

where not exists (

select * from Course

where not exists (

select * from SelectCourse

where Course.ID=SelectCourse.CourseID and

 Student.ID=SelectCourse.StudentID

)

)

3. Double negative

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query student table

3 =A1.query("select * from Course") /Query course table

4 =A1.query("select * from SelectCourse") Query SelectCourse table

5 =A4.groups(StudentID;
icount(CourseID):CourseCount)

/Group by student ID and summarize the the number of courses selected by each
student

6 =A5.select(CourseCount==A3.len()) /Select the student ID of all courses selected

7 =A2.join@i(ID, A6:StudentID) /Use A.join@i() function to join and filter

SPL is as follows:

ID Name Class
4 Emily Smith Class 1

A7

CONTENTS

04ANY , ALL1. ANY(or SOME)

2. ALL

1. ANY(or SOME)

Query the total sales amount of products with the name including "water" sold each year. The sales table

and product table are as follows:

Sales
ID
ProductID
Date
Amount

Product
ID
Name
…

1. ANY(or SOME)

The SQL statement is as follows:

select

year(Date) as Year, sum(Amount) as Amount

from

Sales

where

ProductID = any (select ID from Product where Name like '%water%')

group by Year

When any is used with the equal sign, it has the same function as in.

1. ANY(or SOME)

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Sales") /Query sales table

3 =A1.query("select * from Product") /Query product table

4 =A3.select(like@c(Name,"*water*")) /Find products with water in their product names

5 =A2.join@i(ProductID, A4:ID) /Use A.join@i() function to join and filter

6 =A5.groups(year(Date):Year; sum(Amount):Amount) /Group and summarize the total sales amount of each year

SPL is as follows:

Year Amount
2013 3271.0
2014 6874.6

… …

A6

1. ANY(or SOME)

Look for students who are partial, that is, the score difference between the two

subjects is more than 30 points. The student table and score table are as follows:

Score
StudentID
Subject
Score
…

Student
ID
Class
Name
…

1. ANY(or SOME)

The SQL statement is as follows:

Select * From Student

Where

ID = any (

select STUDENTID from Scores t1

where

SCORE-30 > any (

select SCORE from Scores t2

where t1.SUBJECT<>t2.SUBJECT and

 t1.STUDENTID=t2.STUDENTID

)

)

1. ANY(or SOME)

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query student table

3 =A1.query("select * from Score") /Query score table

4 =A3.group(StudentID) /Group score table by student ID

5 =A4.select(~.max(Score)-~.min(Score)>30) /Select students whose highest and lowest scores difference is over 30

6 =A5.id(StudentID) /Deduplicate by Student ID

7 =A2.join@i(ID,A6) /Use A.join@i() to join and filter

Just compare the highest and lowest scores of each student to see if the difference exceeds 30. SPL is as follows:

ID Name Class
4 Emily Smith Class 1
8 Megan Class 1

… … …

A7

2. ALL

Take the employee table as an example to query which employees have higher salaries than all sales

department employees.

ID NAME DEPT SALARY
1 Rebecca R&D 7000
2 Ashley Finance 11000
3 Rachel Sales 9000
4 Emily HR 7000
5 Ashley R&D 16000

… … … …

2. ALL

The SQL statement is as follows:

select

*

from

Employee

where

SALARY > all (select SALARY from Employee where DEPT='Sales')

2. ALL

　 A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query employee table

3 =A2.select(DEPT:"Sales").max(SALARY) /Select the max salary in sales department

4 =A2.select(SALARY>A3) /Select employees with salary more than A3

When all is combined with a greater than sign, it is equivalent to max; when it is combined with a less than sign,

it is equivalent to min. SPL is as follows:

A4 ID NAME DEPT SALARY
5 Ashley R&D 16000

20 Alexis Administration 16000
22 Jacob R&D 18000
47 Elizabeth Marketing 17000

THANKS

