
High-performance
Offline Batch Job
Solution and Case

QDBase

Dilemmas in batch jobs

As data grows, batch jobs increase and computational load intensifies

Slow

Job and service are

delayed due to slow

batch jobs

Strained

On the brink of

probably prolonged

delay on summary

dates

Helpless

Highly dependent on

SP but unable to

expand

Traditional way of performing batch jobs

ETL

Data warehouse/production database

1 Export 2 Import

Stored procedure

3 Get/store intermediate result

Database handling batch jobs

Output

4 Export Interface file

Other databases

Datawarehouse/
production database

Database handling
batch jobs

Oracle, DB2, MySQL, etc.

Interface file/
Other databases

Text file/ BI platforms, business
databases

5 Import/Use

Oracle, Teradata, Hadoop, etc.

Causes behind batch job problems

Extremely slow RDB read/write
Databases require to read data in for further processing due to closed storage and computing schemes

Too many verifications and processing at data read/write result in time-consuming large amounts of data

import/export

Inefficient stored procedure
SQL cannot achieve high-efficiency algorithms due to syntactic deficiencies

Complex, multi-step computations involve storing intermediate results that will consume more IO resources

Database cursor has poor performance and does not support parallel processing to speed up computations

Batch jobs depend heavily on RDBs

Despite their slow running because of the latter’s uniquely sufficient computing ability

A rich offer of functions that can

easily achieve any complex

computations during batch jobs ；

High performance to ensure good

efficiency;

To solve those problems：

Compute outside-database files

without I/O cost;

Access multiple/diverse data

sources directly to compute

mixed data；

We need to put the following two capabilities in place

Strong computing capacityOpenness

Most batch jobs are thus handled in a centralized database

How about using a distributed database to perform batch jobs?

A batch job involves complex computing logic

that often needs tens of thousands of lines of

SP code to achieve, but a distributed DB gives

poor support of SP and is under-qualified.

The use of stored intermediate result by different nodes

results in heavy cross-network reads/writes that lead to

uncontrollable performance that cannot be addressed

via data redundancy

Q

ANo, in many cases we can’t!

Can we increase nodes in a distributed database to speed up batch job?

Poor support of stored procedure
Heavy cross-network reads/writes caused by
Intermediate result uses

01010
10101010
01010101

QDBase batch job process

ETL

Data warehouse/Production database

1 Export

SPL script

2 Compute

Result output
Interface file

Other databases

3 Import/Use

data file

QDBase
（Batch job）

Data warehouse /
Production database

QDBase

Use files to store data and
compute directly

Interface file /
Other DBs

Text file/ BI cubes, business
databases

Oralce, Teradata, Hadoop, etc.

QDBase openness – File processing

File storage advantages

Efficient storage and retrieval system

High IO performance compared to low-

efficiency database storage caused by

constraints and interface limitations

Flexible to use

Easy to split and store, and convenient to

segment for parallel processing

Easy to administrate

Tree-structure directories are convenient to

manage

QDBase file processing capabilities

Time-efficient

QDBase handles batch jobs directly based on

data files without data import/export

High-efficiency storage

QDBase offers high-efficiency proprietary data

format to further speed up batch jobs

QDBase openness – Multiple/diverse data source handling

QDBase offers multiple data source interfaces and supports efficient multi-source mixed

computations that batch jobs can directly use without data import

Multi-source QDBase
Import Export

Multi-source

Mixed computation

Efficient, agile syntaxRich class libraries

QDBase strong computing capacity

QDBase has all-around computing

capabilities with a wealth of encapsulated,

ready-to-use class libraries covering from

grouping, loop, sorting, filtering, set

operations, order set handling to parallel

processing…

QDBase has specialized, agile SPL syntax,

which achieves batch job logic in a more

concise way with shorter code than in

SQL/SPL;

Field tests show that code amount can be

times less

Computing library SPL

QDBase strong computing capacity

High performance algorithmsHigh performance storage

Efficient storage formats

Two proprietary storage formats – bin file and

composite table that support efficient mechanisms

such as compression, columnar storage and index

Order-based storage

For increase compression ratio and location

performance

Double increment segmentation technique

Support any number of parallel threads

……

On top of indispensable high-performance storage

plans, there are efficient algorithms for boosting

computing performance

Multi-purpose traversal

Accomplish multiple computations during one round of

traverse on a large table; this helps reduce IO cost

Delayed cursor

Define multiple computing steps on one cursor to

effectively reduce intermediate results to be stored

Multi-cursor

For parallel processing by making full use of multiple

CPUs to increase performance

……

Performance Optimization of
Historical Policies Association
Batch Job in Insurance Industry

QDBase Application Case

Historical policies association batch job

3-year historical car insurance policies:

two hundred million rows of data

20,000 new policies daily, and 600,000 in one month

Find historical policies corresponding to new policiesTask

Difficult points in historical policies association batch job

Complex computing rule

Three types of judgment for
deciding whether it is the same car;
check whether the car has loan and
needs mandatory insurance

Time-consuming

2-hour for 30-day new policies
DNF for 90-day new policies

Massive data volume
Get hundreds of thousands
of/millions of rows in t wo
hundred million rows

Complex computing rule

A same car has:
same VRN and
registration plate type

A same car has:
same VIN

A same car has:
same chassis
number

Recompute newly increased policies of the year if computing rule is changed ！！

Mandatory insurance Car loan Termination date

90 days

Stored procedure

1800 lines

Field test: QDBase gives excellent performance

12.7 13.4
17

4.5

47.4

112.2

0

20

40

60

80

100

120

C
o

m
p

u
ta

ti
o

n
 t

im
e

Data volume

QDBase VS Informix（Unit: min）

Computation time slightly
increases as new policies grow

1-day new polices 10-day new policies 30-day new policies

Note：QDBase does not create index on historical policy table but uses traversal instead; DB creates index on it and has
advantage in processing policies in a short period. As our customer’s requirement only focuses on policy processing in a long
period, we do not provide optimization on short-period processing scenarios.

6.5 times faster to process
30-day new policies

500 cells
70% fewer code amount

Analysis: why QDBase is fast

Ordered data storage

Store data in order by policy number

Associate policy table and detail table

by segmenting them in order

Intermediate result is ordered, and

there is no need to re-create index

Data compression & columnar storage

Only a dozen among 70 fields of the policy table are involved in

computation

Less than 10 of 56 fields of detail table are involved in computation

A file is 10 times smaller after compression, which effectively

reduces disk reads

Analysis: QDBase offers fast algorithms

1. Associate policy table and detail table by
segmenting them in order

2. Traverse segmentation result1 in loop

3. Increase 3 types of new policies; Associate
with segmentation result1

4. Exit loop2

5. …

1 Associate new policies with existing policy table and detail
table, and perform filtering on result table

2 Associate result1 with detail table (through VIN)

3 Filter result2 and associate policy table

…

15 Associate result1 with detail table (through chassis number)

16 Filter result15 and associate policy table

…

24 Associate result1 with detail table (through VRN)

25 Filter result24，associate policy table

…

High-performance computing needs more than crafting
Many optimization algorithms and storage plans cannot be achieved in RDB (SQL), but can be accomplished in QDBase (SPL)

DB stored procedure QDBase SPL

Multiple large table associations One segment-based association is involved

