
SPL

esProc

A B C

1

2

3

4

5

6

S
P

L

esProc SPL
Data analysis engine

Low code / High performance / Lightweight / Versatility



What is esProc?



What is esProc SPL？

• Data computing and processing engine, run as an 

analysis database or middleware.

• Computing and processing of structured and semi-

structured data

• Offline batch job, online query

• neither SQL system nor NoSQL Technology

• Self created SPL syntax, more concise and efficient

SPL: Structured Process Language



Complex

Difficult

Slow

What pain points does esProc SPL solve？

For the data computing scenarios : Offline Batch Job , Online Query/Report

✓ Slow batch jobs can not fit in certain time window, being strained especially on critical summary dates

✓ Being forced to wait for minutes for a query/report, the business personnel becomes angry

✓ More concurrencies, longer the query time span, the database crashes

✓ ……

✓ N-layer nested SQL or stored procedures of dozens of KBs, programmer himself is confused after three months 

✓ Dozens of datasources like RDB/NoSQL/File/json/Web/…, cross-source mixed computation is highly needed

✓ Separate the hot data and cold data into different databases, it is hard to perform real-time queries on the whole 
data

✓ ……

✓ Too much relied on the stored procedures, the application can not migrate, framework is hard to adjust

✓ Too many intermediate tables in the database, exhausting the storage and resources, but dare not to delete 
them

✓ Endless report demands in an enterprise, and how can the cost of personnel be relieved?

✓ ……



What are the counterpart technologies of esProc SPL?

Databases that use SQL syntax and are applied to OLAP scenarios

• Common database: MySQL, PostgreSQL, Oracle, DB2, …

• Data warehouse on Hadoop:  Hive, Spark SQL, …

• Distributed data warehouse/MPP: …

• Cloud data warehouse: Snowflake, …

• All-in-one database machine: ExaData, …

esProc SPL: Low code, High performance, Lightweight, Openness

Other technologies for structured data analysis and statistics

• Python, Scala, Java, Kotlin, …



What does esProc SPL bring beyond SQL?

SPLSQL

esProc SPL: Reduce the development, hardware, operation and maintenance costs by X times

Development cost

Hardware cost

O&M cost

Lengthy nested code, difficult to write and debug

Huge computing loads consume resources

Simplified stepwise code, easy to write and debug 

Low complexity algorithms reduce resource consumption

Heavy and closed computing ability leads to bloated 
framework

Integrated and open computing ability forms lightweight 
framework

The description ability is insufficient, and complex 

logic needs to be written in a circuitous way

Strong description ability, natural thinking to  

implement complex logic

Imperfect capabilities force complex  technology stack Versatility enables implementing most tasks on its own



Case Brief



• Insurance policy table: 35 million rows，details table: 123 million rows

• There are various ways of association, which need to be handled 

separately

• Informix

• Historical policy matching 6672 seconds

• Codes 1800 lines

Batch job of insurance policies of an auto insurance company

T
A
S
K

Increase speed

6.5 times

Case 

• Historical policy matching 1020 seconds

• Codes 500 lines

Case details： http://c.raqsoft.com/article/1644827119694

http://c.raqsoft.com/article/1644827119694


• SQL: 48 steps，3300 lines

• Historical data: 110 million rows，daily increase: 1.37 million rows

• Complex multi-table join

• AIX+DB2

• Calculation time: 1.5 hours

Batch job of loan agreements of a bank

T
A
S
K

Increase speed

8.5 times

Case 

• Calculation time: 10 minutes，

codes: 500 lines

Case details： http://c.raqsoft.com/article/1644215913288

http://c.raqsoft.com/article/1644215913288


• Huge number of users, and large concurrent accesses

• Branch information changes frequently and needs to be 

associated in time

• Commercial data warehouses on Hadoop 

cannot meet the high concurrency 

requirements

• Using 6 ElasticSearch cluster can cope with 

concurrency, but can not associate in real time. 

The data update time is long, and the service 

must be stopped during this period. 

Mobile banking: multi concurrent account query

1 server vs 6 servers

T
A
S
K

Case 

• Single machine can cope with the same 

concurrent volume as ES cluster

• Real time association, zero waiting time 

for  branch information update

Case details： http://c.raqsoft.com/article/1643533607375

http://c.raqsoft.com/article/1643533607375


• Too many labels, and hundreds of labels can be arbitrarily combined to query 

• Association, filtering and aggregation calculation of a 20 million rows large table and 

even larger detailed tables

• Each page involves the calculation of nearly 200 indexes, and 10 concurrency will cause 

the concurrent calculation of more than 2000 indexes

• Oracle

• Unable to calculate in real time; 

The query requirements have to 

be submitted in advance, and the 

calculation is carried out one day 

earlier. 

Turn pre-calculation 
into real-time calculation

T
A
S
K

Case Calculation of the number of unique loan clients of a bank

• 10 concurrency, 2000 indexes in total, less 

than 3 seconds

• No need to prepare in advance, instantly 

select any label combination, and get 

query results in real time

Case details：http://c.raqsoft.com/article/1672279362788

http://c.raqsoft.com/article/1672279362788


Front-end database in BI System of a bank

Concurrency
5 -> 100

Center data warehouse undertakes all data task of whole bank, which is overburdened and can only assign 5 
concurrencies to BI system

Only for a small amount of high-frequency data, DB2 is not capable for real-time query, and also unable to achieve 
data routing, users must select the data source

Center Data Warehouse BI System

JDBC

esProc

Data Push

esProc stores a small amount of high-frequency data, and large low-frequency data is still stored in the data 
warehouse to avoid repeated construction

esProc takes over the most high frequency computing tasks, and a few low frequency tasks are automatically 
routed to the center data warehouse



esProc can not only implement stored-procedure-like computations on Vertica, but also calculate different sources  directly. 

An insurance company-Outside database stored procedure

Vertica does not support stored procedures; To prepare data, complex nested SQL statements have to be written, and Java hardcoding 

is often required. 

When mixed computing with MySQL, MySQL data has to be loaded into Vertica first, which is tedious, not real-time, and the database 

is bloated. 

The best use for us is to pass parameters 
to the Vertica database.

User comments

Each cell becomes a data array that are easy 
to use, compare and manipulate. It is very 
logical and you have made it user friendly.

Computing 
layer

esProc-Outside database 
stored procedures

Application 
layer

Reporting (BIRT)

Data source
Vertica MySQL

A

ACCESS



Why esProc Works Better



SQL doesn’t support ordered operation sufficiently and doesn’t provide orderly grouping directly; Instead, four layers 

of nesting has to be used in a roundabout way. 

Such statements are not only difficult to write, but also difficult to understand.

In the face of complex business logic, the complexity of SQL will increase sharply, which is difficult to understand 

and write. 

It isn’t an unusual requirement, and it appears everywhere in thousands of lines of SQL in reality, which reduces the 

efficiency of development and maintenance severely.  

SELECT MAX(ContinuousDays)

FROM (SELECT COUNT(*) ContinuousDays

FROM (SELECT SUM(UpDownTag) OVER ( ORDER BY TradeDate) NoRisingDays

FROM (SELECT TradeDate,

CASE WHEN Price>LAG(price) OVER ( ORDER BY TradeDate)

THEN 0 ELSE 1 END UpDownTag

FROM Stock ) )

GROUP BY NoRisingDays )

Why SQL is difficult to write: What is the max days has a stock been rising? 



Why can‘t SQL run fast: Get the top 10 from 100 million rows of data 

This query uses ORDER BY. If it is executed strictly according to this logic, it means sorting the full amount of data, and the 
performance will be poor.

We know that there is a way to perform this operation without full sorting, but SQL cannot describe it. We can only rely on the 
optimization engine of the database. 

In simple cases (such as this statement), many databases can make the optimization, but if the situation is more complex, the
database optimization engine will faint

In the following example, get the TopN from each group, SQL cannot describe it directly, and can only write it as a subquery using 
window function in a roundabout approach. 

In the face of this roundabout approach, the database optimization engine cannot do the optimization and can only perform sorting. 

SELECT * FROM (

SELECT *, ROW_NUMBER() OVER (PARTITION BY Area ORDER BY Amount DESC) rn

FROM Orders ) 

WHERE rn<=10

SELECT TOP 10 * FROM Orders ORDER BY Amount DESC



The SPL solution

A

1 =Stock.sort(TradeDate).group@i(Price<Price[-1]).max(~.len())

The computing logic of  this SPL is the same as that of the previous SQL, but SPL provides orderly grouping 

operation, which is intuitive and concise. 

A

1 =file(“Orders.ctx”).open().cursor()

2 =A1.groups(;top(10;-Amount)) Top 10 orders

3 =A1.groups(Area;top(10;-Amount)) Top 10 orders of each area

SPL regards TopN as the aggregation operation of returning a set, avoiding full sorting;  The syntax is similar in case 

of whole set or groups, and  there is no need to use the roundabout approach. 



The difficulties of SQL stem from relational algebra, and  theoretical problems cannot be solved by engineering methods. Despite 

years of improvement, it is still difficult to meet complex requirements. 

SPL is based on a completely different theoretical system: discrete dataset. SPL provides more abundant data types and basic 

operations, and has more powerful expression capabilities. 

Ordinary people will do like this

1+2=3
3+3=6
6+4=10
10+5=15
15+6=21
21+7=28
…

Gauss does like this

1+100=101
2+99=101
…

A total of fifty 101

50*101= 5050

The smart Gauss came up with a 

convenient and efficient algorithm. 

The key here is: 

Multiplication used!

SQL is like an arithmetic system with only addition. The code is lengthy and the calculation is inefficient. 

SPL is equivalent to the invention of multiplication! Simplify writing and improve performance. 

Why is SPL more advanced? 

Extended reading: 
SPL: a database language featuring easy writing and fast running

【Analogy】Calculate1+2+3+…+100=?

http://c.raqsoft.com/article/1642061412651


1. Complex orderly Computing：funnel analysis of user behavior transformation

• Calculate the user churn rate after each event (page browsing, search, shopping cart addition, order placement, payment, etc.)

• Multiple events are effective only when they are completed within a specified time window and occur in a specified order. It is very hard to implement it 
in SQL, not to mention optimize it. 

2. Multi-step big data batch job

• Complex business requirements are difficult to implement directly in SQL, cursor reading is slow and difficult to calculate in parallel, wasting computing 
resources 

• The implementation using stored procedure requires thousands of lines and tens of steps, with the repeated buffering of intermediate results, the batch 
job cannot be completed within the specified time window  

3. Multi index calculation on big data, repeated use and multiple associations

• Perform the calculation of hundreds of indexes at one time, and use the detailed data for many times, and association is also involved. SQL needs to 
traverse data repeatedly. 

• Mixed calculation of large table association, conditional filtering, grouping and aggregation, and deduplication; Real-time calculation with high 
concurrency.

Common scenarios to beat SQL

In real business, complex SQL (and stored procedures) are often hundreds/thousands of lines, and a large number of roundabout

approaches have to be used to implement the calculation. The code becomes complex as well as the performance becomes low.



Funnel analysis of an E-commerce company

A

1 =["etype1","etype2","etype3"]

2 =file("event.ctx").open()

3
=A2.cursor(id,etime,etype;etime>=date("2021-01-10") && etime<date("2021-01-
25") && A1.contain(etype) && …)

4 =A3.group(uid).(~.sort(etime))

5 =A4.new(~.select@1(etype==A1(1)):first,~:all).select(first)

6
=A5.(A1.(t=if(#==1,t1=first.etime,if(t,all.select@1(etype==A1.~ && etime>t && 
etime<t1+7).etime, null))))

7 =A6.groups(;count(~(1)):STEP1,count(~(2)):STEP2,count(~(3)):STEP3)

SQL lacks order-related calculations and is not completely set-oriented. It needs 

to detour into multiple subqueries and repeatedly JOIN. It is difficult to write and 

understand, and the operation performance is very low. 

Due to space limitation, only a three-step funnel is listed here, and subqueries 

need to be added when adding more steps.

SPL provides order-related calculations and is more thoroughly set-oriented. 

Code is written directly according to natural thinking, which is simple and 

efficient. 

This code can handle funnels with any number of steps, as long as the 

parameters are changed. 

with e1 as (
select uid,1 as step1,min(etime) as t1
from event
where etime>= to_date('2021-01-10') and etime<to_date('2021-01-25')

and eventtype='eventtype1' and …
group by 1),

e2 as (
select uid,1 as step2,min(e1.t1) as t1,min(e2.etime) as t2
from event as e2
inner join e1 on e2.uid = e1.uid
where e2.etime>= to_date('2021-01-10') and e2.etime<to_date('2021-01-25') 

and e2.etime > t1 and e2.etime < t1 + 7
and eventtype='eventtype2' and …

group by 1),
e3 as (

select uid,1 as step3,min(e2.t1) as t1,min(e3.etime) as t3
from event as e3
inner join e2 on e3.uid = e2.uid
where e3.etime>= to_date('2021-01-10') and e3.etime<to_date('2021-01-25')

and e3.etime > t2 and e3.etime < t1 + 7
and eventtype='eventtype3' and …

group by 1)
select

sum(step1) as step1,
sum(step2) as step2,
sum(step3) as step3

from e1
left join e2 on e1.uid = e2.uid
left join e3 on e2.uid = e3.uid



Part of High Performance Computing Mechanism Provided by SPL

Delayed cursor 

Traversal technique

Aggregate Understanding 

※ Ordered cursor 

※ Multi-purpose traversal 

Prefilter traversal

※ Many algorithms and storage schemes here are the original inventions of SPL!

※ Foreign key as pointer

Highly efficient Joins

※ Numbering of foreign keys

Order-based merge

※ Attached table

※ Unilateral HASH Join

Orderly Compressed Storage

High performance storage

Free column storage

※ Hierarchical Numbering 
positioning

Index and Caching

※ Double increment 
segmentation

Preemptive Load Balancing

Cluster computing

※ Multi-zone composite table

※ Cluster dimension table

※ Memory spare tire fault 
tolerance

External storage redundancy 
fault tolerance

Extended reading:  Performance Optimization for Big Structured Data

http://c.raqsoft.com/article/1641367696194


Technical Characteristics



esProc Technical Architecture

Application layer

Storage

Hardware platform

Integrated computing engine

Computing

X86/ARM/…

Algorithm 
engine

Storage 
engine

Multi-source mixed 
computing

Parallel 
computing

Data solidification

1 2 3 4

6

7

Production
database

real-time data

8

SPL（ High performance process computing ）
5



Simple and easy-to-use development environment

Run, debug, run to cursor, step Set breakpoint

Simple syntax, in line with natural thinking, simpler than other high-level 
development languages

What you see is 
what you get 
cell result ,easy 
to debug; 
Convenient to 
reference 
intermediate 
result

Real-time system information output, check at 
any time for abnormality



SPL is especially suitable for complex process operations.

Specially designed syntax system

Natural & clean step-by-step computation, direct reference of cell name without specifically defining a variable



Designed specifically for structured data tables

Rich class libraries

Grouping & Loop Sorting & Filtering

Set operations Ordered sets



esProc, developed in Java, can run independently or be seamlessly integrated into 

applications.

Excellent integration

Application program（Report/Java/WEB Service）

esProc IDE

Computing layer

SPL Script

esProc JDBC/ODBC/HTTP

Data source （RDB、NoSQL、TXT、CSV、JSON、Hadoop）

Interpreted 
execution, support 
hot swap



Multiple data sources are directly used for mixed computations.

Support diverse data sources

Direct computation without loading data into database, using the strengths of original data sources, real time computation



Flexible and efficient file storage

High performance
Private data storage format: bin files, composite tables

File system
Support to store data by business classification in tree directory 

BIN FILE Double increment segmentation supports arbitrary number parallelism

Self-owned efficient compression technique (reduced space; less CPU usage; secure)

Generic Storage, allowing set data

COMPOSITE 
TABLE

Mixed row and column storage

Ordered storage improves compression rate and positioning performance

Efficient intelligent index

Direct file storage without database is more efficient, more flexible, and cheaper.

Double increment segmentation supports arbitrary number parallelism

Integration of main and sub table to reduce storage and association

Numbering keys to achieve efficient positioning Join



More Solutions



Implementation of data-driven micro-service

Problems

Solution

• Mainstream frameworks such as microservices require data processing at the application side. 

• The database is difficult to be embedded in front-end applications, thus hardcoding is the only choice. 

• Java/ORM lacks sufficient structured computing class library, which makes it difficult to develop data 
processing, and hot swap can not be achieved. 

✓ SPL replaces Java/ORM to implement data computing in 

(micro-service) applications. 

✓ Rich class library and agile syntax simplify the 

development.

✓ The system is open and can process data of any source in 

real time.

✓ SPL is interpreted executed, naturally supporting hot 

swap. 

✓ Efficient algorithms and parallel mechanism ensure 

computing performance.

PC Mobile

API Gateway

DB

Java data 
computing

Microservice

DB

Microservice

SPL

esProc data 
computing

File

Interpreted 
execution

RESTful

RESTful

Extended reading：http://c.raqsoft.com/article/1647501354587

http://c.raqsoft.com/article/1647501354587


Replace stored procedures 

Problems

Solution

• Stored procedures are hard to edit and debug, and lack migratability. 

• Compiling stored procedures requires high privilege, causing poor security.

• The shared use of a stored procedure by multiple applications will cause tight coupling between applications. 

✓ SPL is intuitively suitable for complex multi-step data 

computation.  

✓ SPL scripts are naturally migratable.

✓ The script only requires the read privilege of the database 

and will not cause database security problems.

✓ Scripts of different applications are stored in different 

directories, which will not cause coupling between 

applications.

JDBC/RESTful interface

esProc
SPL scripts

（Outside-database stored procedures）

Database Stored procedures

Migration of stored procedures

Extended reading: http://c.raqsoft.com/article/1646637335078

http://c.raqsoft.com/article/1646637335078


Eliminate intermediate tables from databases

Problems

Solution

• For query efficiency or simplified development, a large number of intermediate tables are generated in the database. 

• The intermediate tables take up large space, causing the database to be excessively redundant and bloated. 

• The use of the same intermediate table by different applications will cause tight coupling, and it is difficult to 

manage the intermediate tables (hard to delete). 

✓ The aim for storing intermediate tables in the database is to 

employ the database’s computational ability for subsequent 

computations; SPL can implement the subsequent 

computations after using file storage. 

✓ External intermediate tables (files) are easier to manage, and 

using different directories for storage will not cause coupling 

problems between applications.

✓ External intermediate tables can fully reduce the load on the 

database, even without the need to deploy the database.

JDBC/RESTful interface

esProc
File storage

（External intermediate tables）

Database Intermediate tables

Extended reading: http://c.raqsoft.com/article/1652163420524

http://c.raqsoft.com/article/1652163420524


Handle endless report development requirements

Problems

Solution

• Reporting tools/BI tools can only solve the problems in the report presentation stage and can do nothing about data preparation.

• Data preparation implemented in SQL/stored procedure/Java hardcoding is difficult to develop and maintain, and the cost is high.

• The report development needs are objectively endless, and data preparation is the main factor leading to high development costs.

✓ Add a computing layer between report presentation and 

data source to solve the data preparation problems. 

✓ SPL simplifies the data preparation of reports, makes up 

for the lack of computing ability of reporting tools, and 

comprehensively improves the efficiency of report 

development. 

✓ Both report presentation and data preparation can quickly 

respond to handle endless report development needs at 

low cost.

Report
Computing
Layer

Report
Presentation
Layer

Report application

Computing engine(esProc)

Fixed report Adhoc analysis

Extended reading: http://c.raqsoft.com/article/1642764157224

RDB NoSQL File

http://c.raqsoft.com/article/1642764157224


Programmable data routing to implement front-end calculation

Application
center

data warehouse

esProc
data routing

high-frequency data 
in front-end

Center data warehouse needs front-end calculation to share 

the heavy workload

• Move only high frequency data to front, take over most of 

the calculation requests

• The programmable data routing automatically selects the 

front-end data and data warehouse and mixes the 

calculation results, applications have transparent access to 

full data

• Dilemmas of implementing front-end calculation through traditional database

• Application may access all the data, and moving full data to front causes redundant construction and high cost

• Due to lack of  data routing, moving part of the data to front causes that application can not transparently access the full data 

and the poor experience

Data routing  enables low-cost high-performance full data analysis

Extended reading： http://c.raqsoft.com/article/1672364811904

http://c.raqsoft.com/article/1672364811904


Mixed computation to implement real-time HTAP

• Mixed calculation of hot and cold data to 

implement T+0 real-time analysis 

• Organized historical cold data

• Real time reading of transaction hot data

• The production system needs no modification

• Make full use of the advantages of the original multiple 
data sources

• HTAP databases are difficult to meet HTAP requirements

• Requiring replacement of production system database, with high risk 

• Insufficient SQL computing power, insufficient historical data preparation, low performance

• Closed computing capacity, complex ETL process required due to external diverse data sources, poor real-time ability

Support low-risk, high-performance and strong real-time HTAP with open 
multi-source hybrid computing capability

Production Database

Msg

RDB

NoSQL

IotDB

…
Application 

system

T+0 real-time 
analysis

Cold

data

Transaction data

esProc

Extended reading： http://c.raqsoft.com/article/1666750912264

http://c.raqsoft.com/article/1666750912264


• Open format file data computation

• txt/csv/xls/json/xml

• High performance private format file storage and 

computation 

• Enter at will and sort out gradually；Lake to House

• Rich data source interfaces, direct real-time computing

Perform computation on files to implement Lakehouse

• RDB can only House, not Lake

• Strong constraints, non-compliant data cannot enter, and complex ETL processes are inefficient 

• Closed, external data cannot be calculated, let alone mixed real-time calculation

Extended reading： http://c.raqsoft.com/article/1667439960234

DB

NoSQL

IoT

WEB

… DB NoSQL IoT WEB
…

Unified Data Storage

Other Engines

Data Service

Data Source Data Lake

esProc
SPL

esProc High 
Performance Storage

High Performance Computing

High Performance Storage

http://c.raqsoft.com/article/1667439960234


Frequently asked questions

FAQ



Is esProc based on open source or database technology?

esProc is based on a brand-new computing model, no open source technology can be cited, 

and all independent innovation from theory to code.

Relational algebra

SQL

Discrete dataset 

SPL

SPL is based on innovation theory that can no longer use SQL to achieve high performance, 

and SQL can not describe most low complexity algorithms.

A



Where can esProc be deployed

How applications invoke esProc?

A

A
esProc provides a standard JDBC driver for Java applications.

esProc can be integrated in a Java application seamlessly.

esProc can be invoked by a non-Java application via HTTP/RESTFul

esProc is implemented in pure Java. 

esProc can run smoothly under any OS equipped with JVM, including VM, cloud 

server and even container.



Can esProc run based on the existing database?

Where does esProc store data?

AYes, Of course!

However, esProc can not guarantee high performance in this situation due to the 

inefficient I/O of database, and database can hardly provide storage schema which 

is necessary for low complexity algorithm. 

A
esProc stores data in files of private format to guarantee performance.

Any file system installed on OS is available, including NFS.

esProc can easily implement separation between storage and computation to scale 

out 



What are the weaknesses of esProc?

A
Comparing with RDB:

The metadata is immature in esProc, most of computation will begin from 

accessing data source, it will be a little tedious for simple operations.

Comparing with Hadoop/MPP:

The cluster function of esProc has not many chances to  be well-trained.

esProc has reduced many clusters into a single machine without sacrificing 

performance in history. 

Comparing with Python:

SPL is developing its AI functions, but now is still not even close to Python.



A

How difficult is it to learn SPL

SPL is dedicated to low code and high performance.

Learning SPL is not difficult. It can be mastered in hours and skilled in weeks.

What is  difficult is to design optimization algorithms!

Is there a tool to convert SQL to SPL automatically?

A
Not yet.

The information in SQL statement is insufficient to optimize its performance. 

Frankly, we are not a veteran like RDB vendor for guessing goal of a SQL, so 

converting SQL to SPL directly will usually lead to slower speed.



How to launch a performance optimization process

Give a man a fish and you feed him for a day. Teach him how to fish and you feed him for a lifetime!

Preliminary proposal on 
problem scenario

Optimizing experts to 
understand computing 

and data characteristics

Discussion and 
determination on           
structural scheme

Testing, verification,
Tuning, and

Task finished
Preparing reports Training Users

The first 2-3 scenarios will be implemented by Scudata engineer in collaboration with users.

Most programmers are used to the way of thinking in SQL and are not familiar with high performance algorithms. They 

need to be trained to understand in one or two scenarios.

Dozens of performance optimization routines will be experienced and learned. Algorithmic design and implementation 

are not so difficult.

Extended reading ：What should we do when SQL (and stored procedure) runs too slowly?

A

http://c.raqsoft.com/article/1663556292619


Summary of advantages of esProc

5
advantages

High performance

The processing speed of big data is 

1 order of magnitude higher than 

that of traditional solutions

Flexible and open

Multi-source mixed computation

Can run independently, or embedded 

into applications

Save resources

Single machine can match cluster, 

reducing hardware expense 

Environment-friendly 

Sharp cost reduction

Development, hardware, O&M costs 

reduced by X times

Efficient development 

Procedural syntax, in line with natural 

thinking 

Rich class libraries 



THANKS


